Fragging DNS

Vixie 2020-02

draft-fujiwara-dnsop-avoid-fragmentation

- Comments and concerned from an authority server operator
- "For IPv6, we support DNS queries over TCP and UDP; for IPv4, just UDP
 - Attacks on the DNS infrastructure via IPv4 are frequent. Mitigation services requires limiting the attack surface
 - TCP state on the server is expensive. Millions of QPS using UDP, even moving a fraction of that load to TCP would be disastrous. UDP frag has no sender state.
 - Our IPv4 ranges are anycasted over multiple networks and datacenter locations.
 - no guarantee that establishing a TCP connection is even possible flows often incoherent.
 - DNSSEC works perfectly with the standard EDNS0 size setting of 4096.
 - Your proposal breaks this working mechanism. We noticed this as a large access provider followed your suggestion, and reduced the EDNSO bufsize. They have disabled that change for now to unbreak their DNS resolvers."

Tyranny of IEEE 802.3 MTU

- *bps* ethernet defined min 64 bytes, max 1500 bytes, IRG, trailers
 - Same for , , , , ,
 - Max PPS has grown to , , , , ,
 - *bps* scales with density
 - PPS scales with power, heat, complexity
- Eventually the MTU will have to increase
 - Should have been before now
 - May be ~ in our lifetimes
- We should not be hardwiring payload sizes
 - Look at the route MTU (LAN, MAN, WAN)

512 vs. 1232

- TCP knows payload max size when assembling a segment
 - IP + options, TCP + options, and far-end MSS, are all known
 - Next data in the stream, and PSH signaling, are all known
- UDP senders do not know payload max size
 - DNS client or server must estimate before sending
- Minimum MTU for IPv4 is 68, for IPv6 is 1280
 - Minimum reassembly capacity for IPv4 is 576, for IPv6 is NaN
 - 68 = 60 + 8; 576 = 68 + 512
 - 1280 40 8 = 1232
 - "and smaller still if additional extension headers are used." (RFC 2460)

1232 vs. 1400

- UDP with 1232-octet payload only works by accident
 - IPv6 extensions aren't uncommon
 - "Each extension header is an integer multiple of 8 octets long"
 - If MTU 1280 was happening, UDP would often fail
 - Because MTU is usually ~1500 or larger, UDP on IPv6 usually works
- 1232 assumed that PMTUD would be done, which doesn't work
 - We should allow DNS UDP senders to check the route's MTU
 - LAN route might be ~9K, default route will likely be 1500
- We should admit that actual Internet MTU is ~1500
 - And we should leave some slop for tunnel and extension overhead
 - Therefore ~1400 would be a perfectly safe DNS UDP max payload size