
DNS Cache Monitor

Introduction

Operation

State Machine

Appendix

1 Introduction

The cache monitor is running on every instance of an anycast DNS cache. It performs local
checks to determine whether the cache is working properly. Should any of these checks fail, it
attempts to restore the cache to an operational state. Repeated failures cause the cache to be
taken offline for a holddown period which is increasing exponentially up to a pre-set maximum
if the problem is persistent.

The monitoring process takes as input a set of <anycast address, interface> pairs and
a set of domain name queries in the IN class specified as <domain name, query type>
pairs.

 <address_1, iface_1>
 .
 .
 <address_n, iface_n>
 <qname_1, qtype_1>
 .
 .
 <qname_m, qtype_m>

For example:

 <130.59.31.251, lo:1>
 <2001:620:0:FF::2, lo>
 <cache-mon-1.net.switch.ch., TXT>
 <cache-mon-2.net.switch.ch., TXT>
 <cache-mon-3.net.switch.ch., TXT>

Each DNS resource record referenced by these queries should have a TTL of 0 and they should
all be served by physically independent name servers. The first condition gurantees that the
“DNS cache availability check” described below will always require the cache to perform queries
to remote hosts rather than answering the query from its cache. The second condition makes the
check robust against the failure of any of the name servers for the zones that contain these
resource records.

For the full set of command-line options, see the man page.

2 Operation

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

1 of 8 08/ 9/10 05:27 PM

2.1 Configuration

The process can be configured by editing the file /etc/default/dns-cache-monitor and
restarting the daemon. This file should set the shell variables DAEMON_OPTS, ADDRV4 and
ADDRV6. DAEMON_OPTS can contain any of the valid daemon options, while ADDRV4 and
ADDRV6 should contain exactly one address specification for the corresponding address family as
described in the man page. The address specifications should not be edited by hand. The
preferred method to manipulate them is by issuing the command

 bash# dpkg-reconfigure dns-cache-monitor

A typical configuration looks like this:

 DAEMON_OPTS="--daemonize --mailto=noc@switch.ch"
 ADDRV4="130.59.31.248/lo:1"
 ADDRV6="2001:620:0:FF::3/lo"

2.2 Start/Stop

The daemon is crontrolled through an init script in the usual manner, i.e.

 bash#/etc/init.d/dns-cache-monitor start

to start,

 bash#/etc/init.d/dns-cache-monitor stop

to stop and

 bash#/etc/init.d/dns-cache-monitor restart

to restart. When the daemon has detected an error condition, it sleeps for some time before
making the next attempt to activate the service. This holddown period can be as long as 2
hours. The daemon can be forced to end the holddown immediately with

 bash#/etc/init.d/dns-cache-monitor resume

Note that when the cache monitor is stopped, the name server is not automatically stopped as
well.

2.3 Logging and notification

All events and actions are written to the log file (refer to the man page for details where the
information is written to). Whenever a state transition occurs, an email is sent to the address
specified by the –mailto option of dns-cache-monitor, including the last 15 log messages.

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

2 of 8 08/ 9/10 05:27 PM

3 State Machine

The monitoring process is implemented as a finite state machine (FSM). This section describes
the events, states, actions and transitions between states that make up the FSM.

3.1 Events

The dns-cache-monitor periodically checks three conditions (every 4 seconds by default).
Each condition can be either true or false and each outcome represents an event that drives the
FSM.

3.1.1 Interfaces up (E_IFUP)

Each interface is checked to be marked as UP by the kernel according to the pseudo-code

 E_IFUP = true
 foreach interface {
 if not up(interface) {
 E_IFUP = false
 }
 }

3.1.2 Local addresses reachable (E_REACH)

For each interface that is up, it is verified whether the associated anycast address is locally
reachable with ICMP echo requests (the TTL of the echo request packets is limited to 1 to make
sure they don't leave the host). The result for each interface is stored for use in the last event
(E_CA).

 E_REACH = true
 if (E_IFUP) {
 foreach address {
 if not ping_with_ttl_1(address) {
 E_REACH = false
 address.reach = false
 }
 }
 } else {
 E_REACH = false
 }

3.1.3 DNS cache available (E_CA)

The local DNS cache must be configured to listen on all anycast addresses as well as the
loopback addresses 127.0.0.1 and ::1. For each anycast address that has been checked to
be reachable, it is verified whether the cache can iteratively resolve DNS queries sent to this
address. If an address is not marked as reachable, the loopback address for the corresponding

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

3 of 8 08/ 9/10 05:27 PM

address family is used instead.

First, the list of queries supplied as input to the monitoring process is sorted in an arbitrary
order. Next, each query is tried in turn until either one succeeds or the list is exhausted.

If at least one query can be resolved sucessfully for all addresses or the loopback addresses, the
cache is marked to be available.

 E_CA = true
 foreach address {
 query_address = address
 if not address.reach {
 switch(address_family(address)) {
 case ipv4:
 query_address = 127.0.0.1
 case ipv6:
 query_address = ::1
 }
 }
 randomize_queries()
 foreach query {
 reply = dns_query(query_address, query.name, query.type)
 if not (reply.rcode == NOERROR and reply.answers == 1) {
 E_CA = false
 }
 }
 }

3.2 States

3.2.1 S_INIT

The state S_INIT is entered when the process starts up. After initialization, the FSM transitions
unconditionally to S_UP and never enters S_INIT again.

3.2.2 S_UP

When in this state, all anycast addresses are reachable and the Cache is working properly on all
of them. This is represented by the following combination of events

 S_UP: E_CA && E_REACH

3.2.3 S_IDOWN

In this state, at least one interface holding one of the anycast addresses is down but the cache
is working properly at least on the loopback addresses (note that !E_IFUP implies !E_REACH).

 S_IDOWN: E_CA && !E_IFUP

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

4 of 8 08/ 9/10 05:27 PM

3.2.4 S_DOWN

In this state, the cache is not working for at least one address family and at least one interface
is down.

 S_DOWN: !E_CA && !E_IFUP

3.3 Actions

The actions described below are executed during state transitions.

3.3.1 A_IFUP

Execute the system commands to bring all interfaces up.

3.3.2 A_IFDOWN

Execute the system commands to bring all interfaces down.

3.3.3 A_RCFG

If the cache is still running, signal it to reconfigure itself. This is required at least for BIND to
listen or stop listening on interfaces that have come up or gone done, respectively.

If the cache is not running, it is started.

3.3.4 A_RSETH

Reset the holddown timer to its initial state.

3.4 State transitions

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

5 of 8 08/ 9/10 05:27 PM

Appendix

A Debian Package

The software is available as a Debain package called dns-cache-monitor. To build an
architecture-independent package, check out the source [http://cvs.switch.ch/cgi-bin/viewcvs.cgi
/dns-cache-monitor/?root=network] from CVS

 bash$ CVSROOT=:ext:cvs.switch.ch:/reps/cvs/network cvs co dns-cache-monitor

and execute dpkg-buildpackage -rfakeroot in the CVS sandbox. To make a new
release, edit debian/changelog accordingly before building the package. Each release should
be tagged with

 bash$ cvs tag -c release_<major>-<minor>_<revision>

for example

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

6 of 8 08/ 9/10 05:27 PM

 bash$ cvs tag -c release_0-4_1

B Loopback interfaces and routing issues

The Quagga routing suite is a prerequisite dependency for the dns-cache-monitor package.
It is required to inject the anycast addresses into the internal routing system. See the
documentation of the BGP configuration for host-routes for details.

When the package is first installed, an unused sub-interface of the loopback interface is selected
for each anycast address of the local DNS cache instance.

Operating systems differ in the manner in which IPv4 and IPv6 addresses can be configured on
the loopback interface.

Solaris

On Solaris, every physical interface (the loopback device is considered to be physical as well in
this context) can be configured with an arbitrary number of IPv4 and IPv6 addresses. Each
address is assigned to a separate sub-interface (also called logical interface) of the
corresponding physical interface, e.g.

 : gall@tahoma[gall]; /sbin/ifconfig -a
 lo0: flags=1000849 mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
 lo0:1: flags=1000849 mtu 8232 index 1
 inet 130.59.31.8 netmask ffffffff
 lo0:2: flags=1000849 mtu 8232 index 1
 inet 130.59.211.10 netmask ffffffff
 bge0: flags=1000843 mtu 1500 index 2
 inet 130.59.138.22 netmask ffffff00 broadcast 130.59.138.255
 bge1: flags=1000843 mtu 1500 index 3
 inet 130.59.138.23 netmask ffffff00 broadcast 130.59.138.255
 lo0: flags=2000849 mtu 8252 index 1
 inet6 ::1/128
 lo0:1: flags=2000849 mtu 8252 index 1
 inet6 2001:620::8/128
 lo0:2: flags=2000849 mtu 8252 index 1
 inet6 2001:620::5/128
 bge0: flags=2000841 mtu 1500 index 2
 inet6 fe80::203:baff:feaa:b28f/10
 bge0:1: flags=2080841 mtu 1500 index 2
 inet6 2001:620:0:1b:203:baff:feaa:b28f/64
 bge1: flags=2000841 mtu 1500 index 3
 inet6 fe80::203:baff:feaa:b290/10
 bge1:1: flags=2080841 mtu 1500 index 3
 inet6 2001:620:0:1b:203:baff:feaa:b290/64

This is very convenient, because an address can be activated or deactivated by simply
configuring the corresponding sub-interface as up or down, respectively.

Linux

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

7 of 8 08/ 9/10 05:27 PM

On Linux, additional IPv4 addresses can only be configured on sub-interfaces, while IPv6
addresses can only be configured on the physical interface, e.g.

 : gall@yasur[gall]; ifconfig lo
 lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 inet6 addr: 2001:620:0:ff::2/128 Scope:Global
 inet6 addr: 2001:620::9/128 Scope:Global
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:9495122147 errors:0 dropped:0 overruns:0 frame:0
 TX packets:9495122147 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:13746229324572 (12.5 TiB) TX bytes:13746229324572 (12.5 TiB)

 : gall@yasur[gall]; ifconfig lo:0
 lo:0 Link encap:Local Loopback
 inet addr:130.59.31.9 Mask:255.255.255.255
 UP LOOPBACK RUNNING MTU:16436 Metric:1

 : gall@yasur[gall]; ifconfig lo:2
 lo:2 Link encap:Local Loopback
 inet addr:130.59.31.70 Mask:255.255.255.255
 UP LOOPBACK RUNNING MTU:16436 Metric:1

This is very inconvenient for IPv6, because in order to activate or deactivate an address, it must
be added or removed from the lo interface.

network/docu/dns/dns_cache_monitor.txt · Last modified: 2010/04/13 15:26 by 2001:620:0:4:203:baff:fe4c:d99b

Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-Noncommercial-Share Alike 3.0 Unported [http://creativecommons.org/licenses/by-nc-
sa/3.0/]

network:docu:dns:dns_cache_monitor [Network] https://wiki.switch.ch/dokuwiki/doku.php?id=network:d...

8 of 8 08/ 9/10 05:27 PM

