
 1

Measuring the cost of adding security on
Domain Name System (DNS)

Daniel Migault, Security Lab, Francetelecom R&D {mglt.biz@gmail.com}

Abstract— Domain Name System (DNS) is a public
infrastructure that makes Internet so easy to use. On the other
hand this protocol has been so popular that other protocols
such as ENUM, or other private databases are thinking of
implementing DNS-like database. 3G, IMS are other examples
of wireless architecture that relies on DNS, especially for
routing purposes, and the discovery of SIP-proxies.. In a near
future, it seems then that DNS-like databases will host many
kind of information, some being confidential, some needing
dynamically being updated...
Whereas public or private, DNS until now, was not really
implementing much security. This paper aims at measuring the
cost and impact of different security extensions on the Domain
Name System (DNS), such as DNSSEC, TSIG, as well as other
security protocol such as IPsec. Tests were performed both on
single servers as well as on a network environment.
By doing so, we think that anyone relying on a DNS
architecture public or private will have the key element to
secure this architecture, according to its needs, such as
dynamic update, scalability, time response, CPU load...

Index Terms— DNS, DNSSEC, Naming architecture,
Security

I. INTRODUCTION
Internet mainly relies on DNS system which enables the
binding between a human readable domain names such as
www.francetelecom.com and an IP address. This naming
system was elaborated when security was not considered as
a critical issue. Then, a few security extensions were added
to the DNS protocol (DNSSEC rfc2535 [5], rfc4033 [2],
rfc4034 [4], rfc4035 [3], TSIG rfc2845 [9], SIG(0) rfc2931
[6]). Nevertheless those options are still not fully deployed
over the global Internet, so today DNS can’t be considered
as secure.
On the security point of view, frequent attacks against DNS
servers, show DNS’s Internet Achill’s heel position.
DNSSEC deployment is more and more required. However,
this protocol standardized in March 2005 implies radical
changes on both the structure and the architecture of the
current DNS. Indeed DNSSEC is using heavy security
mechanisms, that impact DNS protocol.
DNS system is mainly used to enable naming service,
binding a domain name and an IP address. However, new
protocols such as ENUM for example, gives DNS new
perspectives of services, and so new way to handle DNS
databases, with new security requirements as
confidentiality, authentication of clients...
This article aims at measuring costs generated by the use of
DNS security extensions. This article will present results of
a bench of tests of various DNS security extensions

(DNSSEC and TSIG), as well as other security protocols
such as IPsec (rfc2401[8], [10]). Tests were all performed
on the same DNS architecture, so that comparison between
those security extensions can easily be done. Once security
cost has been highlighted, it is possible to deploy a secure
DNS database. Selection of relevant security mechanisms is
based on the specific security requirements, as well as
performances the data base should meet, taking into account
the global network environment. On the other hand, by
knowing the cost of security extensions, administrators
could also plan a migration scenario by first modifying the
architecture, and then deploy required security extensions.

II. TESTED DNS ARCHITECTURE DESCRIPTION

Security tests on DNS were performed on the DNS
architecture presented in figure 1 and figure 2. The DNS
architecture is considering two zones :

- A ”father zone” whose domain name is
”rootdomain”

- A son zone whose domain name is
”subdomain.rootdomain”

Network architecture of this platform is composed of three
DNS servers:

- One hosting the rootdomain zone file
- Two DNS servers hosting the subdomain zone

subdomain.rootdomain. One of the servers is a
master DNS server, and the other is the slave DNS
server

The tested DNS architecture platform is connected the IPv6
experimental network [13] of France Telecom R&D. The
DNS cache-forwarder server is resolving requests sent by
the clients.
Servers are Pentium II and III at 500 Mhz with 128 MB
memory, running OS Linux Ubuntu (kernel 2.6). DNS
servers software is BIND 9.3.1 ([1]). Requests were sent
using the client of this distribution, as well as a home
developed DNS Java client.

 2

Figure 1: Tested DNS/DNSSEC architecture

III. GOALS AND STRATEGY

A. DNS Security mechanisms description

DNSSEC stands as DNS security extension, and has been
standardized by the IETF in documents rfc4033 [2], rfc4034
[4] and rfc4035 [3]. This extension enables data integrity
check, while packets go through the network from server to
client as well as DNS data source authentication. Data
source authentication is possible trough the establishment of
a chain of trust between the DNS servers. The chain of trust
enables to go from one trusted DNS servers to trusted
subdomain DNS servers. Thus DNSSEC enables you to get
a response from a DNS server you can trust. Trust is based
on cryptographic public / private key properties.
TSIG and SIG(0) (DNS Request and Transaction
SIGnature) are DNS extensions that enable authentication.
TSIG ((rfc2845 [9]) is signing data using symmetric
cryptography. Client and DNS servers authenticate
themselves by sharing a private key. Since communicating
entities are using pre-shared keys, authentication between
nodes is nor scalable. Thus TSIG can only be used with a
very few number of nodes. TKEY (rfc2930 [7]) is a
mechanism that enable setting up a TSIG key between
different nodes.
SIG(0) (rfc2931 [6]) is using asymmetric cryptography. It
enables a DNS server to encrypt a DNS transaction with a
private key. The public key is on the server and available in
the zone file. Whereas DNSSEC is signing data, with the
private key, SIG(0) is signing the exchange.
IPsec (rfc2401 [8]) (Internet Protocol Security) enables
confidentiality, and authentication issues of IP datagrams.
IPsec is not dealing with data, but with data flows
exchanged between two IP nodes. So IPsec is authenticating
the source IP address of the device that is sending DNS data
rather than the authority that has generated the DNS data.
On the other hand, DNSSEC is authenticating the source of
the DNS data. One can have access to those DNS data, from
requesting a cache server, a primary server, or any kind of
device, the signature will be the same, since the same key is
used to sign DNS data. Using IPsec, authentication is based
on a specific IP address, and so DNS requests have to be

sent to that specific server. IPsec, in our configuration, is
using symmetric cryptography, which, compared to SIG(0),
needs less resources. Furthermore, IKE (Internet Key
Exchange) is a protocol that enables management of SA
(Security Association) between peers.

B. Differences between security mechanisms

To point out differences between mentioned above security
mechanisms, some aspects might be considered:

Which way data are encrypted? Encryption can be either
symmetric or asymmetric. Symmetric encryption requires
that both entities exchanging data own a shared secret key.
The main advantage of using symmetric encryption mode is
that it costs far less than asymmetric encryption. In fact, for
a given security level, far less calculation resources are
required when symmetric encryption are considered. On the
other hand one of its drawbacks is that mechanisms to set in
a secure way, the shared secret key between the nodes must
be provided. Furthermore, since both entities are using the
same secret key, authentication cannot be proceeded as with
asymmetric cryptography. One can easily understand that if
two nodes and only two nodes are sharing a key, by
decrypting data, one node can deduce data has been sent
from the other node. In that sense one can think of
authentication with shared key. This is not anymore the case
when the key is shared by more than two nodes! By sharing
the key between more than two nodes, encrypted data might
have been emitted from any node that owns the key. As a
result, one can’t prove data has been emitted from one or the
other node.
What kind of security is implemented? Security is a
generic concept and can be considered from different ways,
implying different security mechanisms or security
properties. Security properties considered are the one
mentioned below:

- Confidentiality: this property enables data sent
through a network to be read and understood only
by specific users. Encryption is usually used for
confidentiality purpose. Most of the time
encryption operations require algorithm, and keys.
Whoever doesn’t have the appropriated key will
not be likely to have the clear and understandable
data. Theses who are owning the appropriate key
will need to decrypt the encrypted data. The
decryption process also requires keys. When
symmetric cryptography is used, the key can be a
pre-shared key which means that data is encrypted
and decrypted with the same key. When
asymmetric cryptography is used, a pair of public /
private key is required. Data encrypted with the
private key will be decrypted thanks to the public
key, and data encrypted with the public key will be
decrypted with the private key.

- Integrity: this property enables a user to assert the
received data has not been changed by a third
entity. Hash functions are often used in that
purpose. A hash function is a one-way function
that takes input data of any size and generates an
output data of a given size. In our purpose, a hash
function is such that if two data are different,

 3

hashes are different in term of probability. This
enables one to check whether or not a given data
has been changed from the time it has been sent
and the time it has been received.

- Authentication: this property enables the node
that receives the data to check the identity of the
sender. When public / private keys are involved, a
data encrypted with a private key can only be
decrypted with the public key. By using this
process, a node that is owning a pair of public /
private key can send data encrypted with the
private part of the public / private pair of keys to
another node. Only nodes that are owning the
public part of the sender node’s public / private
pair of keys, will be likely to decrypt the data.
Since such data could only have been sent by the
node that is owning the private key, the sender is
then authenticated. Also data can be the
meaningful data, but if one is only interested in
using asymmetric cryptography for authentication,
the encrypted data can be only the hash of the
meaningful data. By doing so the encrypted data is
far less smaller. This process is called the signature
process. As we saw in previous section,
authentication can also be considered with pre-
shared keys, as long as the key is shared between
two, and no more than two nodes.

What is the encrypted data? Considering one encryption
method, one needs to know what to encrypt. Although IPsec
and DNSSEC are not using the same encryption method,
our purpose in that subsection is not to discuss about used
encryption methods. Our purpose is to point out the nature
of the encrypted data, and its meaning in term of security for
network deployment.

In the case of IPsec, IP datagram between two nodes are
encrypted. This means that security is implemented at the
transport layer, and enables to secure communication
between nodes. On the other hand, DNSSEC implement
security at the application layer, by encrypting the data
itself, and providing signature.

The difference is then the same as if one was considering a
letter with a signature. We do generally don’t care about
who puts the letter into the mailbox. We are more concerned
about who signed the letter, and use the signature at the
bottom of the letter to authenticate the person who wrote the
letter. This is DNSSEC point of view. By appending a
signature to the data at the application
layer, DNSSEC client doesn’t care about who provides the
data to the client. DNSSEC client are rather concerned
about who signed the data, and if the nodes that signed the
data is a trusted node.
If one goes on with this analogy, another way to consider
security is to care about who provides the data, and consider
that data is reliable when coming from a trusted node. This
is IPsec’s point of view. IPsec, is securing the transport
layer, and so relies rather on nodes then on the data.

Those two visions have an impact in term of network
deployment. IPsec aims at securing a tunnel between two
nodes, each IP datagram will be encrypted on the flow. This

means that pre-calculation is not possible. In term of
network deployment the use of IPsec means the trust is
based on connectivity to trusted nodes. This would then
require that clients connect themselves directly to the trusted
node. So this would mean that all traffic will be
concentrated on the trusted nodes, which would probably be
in our case the authority servers. On the other hand, since
DNSSEC is signing data at the application layer, data can be
sent to the client by non trusted nodes such as relay servers.
This is called the cache mechanism. Cache servers are
collecting answer from previous requests, and answer to
coming request with the answer they are storing. This
mechanism enables DNS / DNSSEC traffic to be split
between cache servers and authority servers. Note that this
mechanism is possible because security is related to the
data, and signatures are sent with the corresponding data.
Asymmetric cryptography is used, which costs more than
asymmetric cryptography, but that, in other hand enables
pre-calculation. In fact communicated data are known in
advanced, and do not vary from one client to the other. In
that sense signatures do not need to be generated on the
flow, and can be pre-computed.

C. Goals of the tests
The tests presented in this paper aims at giving keys to
people that are looking to secure their DNS infrastructure.
Cost of security will be presented considering different
criteria such as functionalities, performances, as well as
different configurations.
The main configuration taken into account are :

- DNS: This configuration is the reference we are
using to measure the security cost of other
configurations.

- DNSSEC: This configuration is mainly concerned
by DNS data integrity check and authentication.
This DNSSEC security extension is not symmetric
in the sense that only data from the server are
concerned by security operations. The client is not
authenticated by the server for example, and no
security operations on client requests are being
performed by the server.

- DNS + IPsec: This configuration is rather used in
server-to-server communication or client-to-server
when the number of clients is relatively small. In
fact, IPsec tunnel requires configuration which can
be a problem to scalability, when the number of
client increases. On the other hand the main
advantage of this configuration is to add
confidentiality.

- DNSSEC + IPsec: This configuration is used to
secure links between servers with IPsec, in order to
secure all transactions, and not only DNS data.
DNSSEC is in that sense considering the
communication between clients and servers.

- TSIG : This configuration is only use with server
to server communication. In fact TSIG is using
symmetric cryptography and so both
communicating entity need to be configured. On
the contrary to IPsec that can use IKE for key
negotiation, there is no key negotiation protocols
specifically designed for TSIG communication. At
last, on the contrary to IPsec, TSIG is not

 4

implementing confidentiality of transferred data,
but is only focused on integrity purpose.

D. Tests Strategy

For each mentioned configuration, this paper aims at
measuring, in a quantified way, the impact of security on the
DNS architecture. This impact with be measured thanks to
the following criteria:

- Time response to requests
- CPU load generated by the DNS process
- Updating time

Tests are made in two distinct environments :
- Single server
- Simulating DNS network architecture

Tests on a single server aim at measuring the security
impact on specific devices. Those kind of tests will be called
server test. Nevertheless, DNS servers are part of a network,
and specific servers test might generates border effect on the
network or on the Naming architecture. Measurement of
security cost on the global naming architecture will be
called Network tests.
Tests can be of three distinct natures:

- Unitary Tests: Those tests aim at measuring server
and network behavior on a per request base. In
order to get readable results, tests need to be
performed a certain number of time to meet
probability requirements.

- Load Tests: Those tests aim at measuring server
and network behavior in a network environment,
i.e. when more than one client are sending requests.
In that purpose, many parallel clients will be
simulated.

- Update Tests: Those tests aims at measuring the
servers / network capacity to deal with updates. In
this paper, tests will be proceeded in the following
order.

At first unitary test will be made, then, loading tests. At last,
updating tests will be performed. Tests concerning time
response and memory / CPU load, two types of DNS client
were used: the traditional DNS client dig, that is part of the
BIND 9.3.1 ([1]) distribution, and a Java home-made client
specifically developed for the tests purposes. If dig client is
waiting for the answer of a request before proceeding to the
next request, the java client is working in a asynchronous
way. It uses two threads, one that is sending requests, and
the other that is receiving responses and that analyses them.
By its design it is more adapted for variable loading tests.
Updating tests are using the traditional nsupdate of BIND
9.3.1 distribution. To generate requests automatically, bash
scripts are used.

IV. UNITARY TESTS

A. Unitary test description

The first test aims at evaluating impact on single DNS
request performed by dig client. In that purpose we do care
not to overload neither the servers nor the network. dig
client is sending request N + 1 only once request N has been
answered. Requests are of same type in any tested

configuration. DNS servers are using CPU time and
memory. Those data are given through system command
regarding the DNS process also referenced as named.

B. Security cost and time response

Figure 2 shows time response expressed in millisecond (ms)
depending on the configuration. The third line is measuring
security cost in percentage (%) by comparing time
responses of configuration that implements security and
time response of the DNS only configuration.

Figure 2 : Unitary tests on different security
configurations

Figure 2 clearly shows impact of the different security
mechanisms on time response. If ”A < B”means that B is
costing more than A, by considering time response we have
the following statement :

DNS < (DNS+IPsec) < DNSSEC < (DNSSEC + IPsec)

DNSSEC costs at lot higher then IPsec because of the use of
asymmetric cryptography, which cost more then symmetric
cryptography. Furthermore, the client not only have to
decrypt, but also to check signatures, which means that it
needs to compute a hash of the received data, then decrypt
the SIG type data sent by the server, and compare it with the
computed Hash. In fact SIG type data on DNSSEC server
are DNS data signatures, that is to say hash of DNS data
encrypted with the private part of the server pair of keys. All
of these make DNSSEC time response much higher then
IPsec time response.
The cost of the (DNSSEC + IPsec) configuration is higher
then the sum of the cost of DNSSEC configuration and the
cost of the IPsec configuration. In fact DNSSEC data are
more verbose, so IPsec, is, in this configuration, encrypting
more datagram than in the IPsec only configuration.

C. Security cost and time CPU

The table below shows security cost of the different
configurations according to time CPU of the DNS (named)
process. The cache-forwarder server is resolving requests in
a recursive way. This means that a request sent by the dig
client to the cache forwarder generates a first request from
the cache-forwarder to the rootdomain DNS server,
followed by a second request from the cache-forwarder to
the subdomain DNS server. Of course servers are
configured to work in a iterative way, which means that the
answer from server to the cache-forwaders are only made of
DNS data that are within servers’ zone file. In this tests all
servers devices are the same.

 5

In addition to decryption operation, a request sent by the
client generates two requests from the cache-forwarder. One
is sent to the rootdomain DNS serve, and one is sent to the
subdomain DNS servers. Since there is load balancing
between master and slave DNS server, one out of two is sent
to the slave subdomain DNS serve and one out of two is
sent to the master subdomain DNS server.
Time CPU is quite low because the dig client is sending a
request only after it has received the response of the
previous request. This shows that network latency is much
more important than DNS resolution load, which gives DNS
/ DNSSEC server a high availability.

Tested server /Config DNS (DNSSEC+IPsec) DNSSEC (DNSSEC+IPsec)
dnssec1
rootdomain server

0.82
%
[0%]

1.21 %
[+47%]

1.25%
[+52%]

2.89%
[+259%]

dnssec2
(master subdomain server)

0.20%
[+0%]

0.36%
[+80%]

0.30%
[+50%]

0.90%
[+350%]

dnssec3
(slave subdomain server)

0.20%
[0%]

0.35%
[+75%]

0.30%
[+50%]

0.73%
[+265%]

Cache forwarder 7.20%
[+0%]

7.40%
[+2%]

8.80%
[+22%]

8.80%
[+22%]

Figure 3 : Security cost and time CPU

Analysis of the results in figure 3 requires to consider DNS
servers according to there type. For the rootdomain DNS
server, one can consider security cost as below:

DNS << (DNS + IPsec) < DNSSEC <<< (DNSSEC +
IPsec)

One can notice the very small difference between time CPU
required for DNSSEC and time CPU required with IPsec.
This clearly shows the balance between sending more data,
and encrypting data. As mentioned in previous section,
signatures are pre-computed in DNSSEC, so that DNSSEC
server doesn’t have to proceed to any encryption operation.
On the other hand DNSSEC servers need to deal with much
bigger zone files than traditional DNS server, and DNSSEC
generates much more traffic than DNS (SIG and NSEC
types are only parts of DNSSEC protocol, and they are
carrying quite huge amount of data, compared to traditional
DNS data). IPsec encrypt smaller data, but each
communication requires encryption operation. CPU time is
equal by using either DNSSEC or IPsec, means that
encryption operation for DNS data costs as much as sending
specific DNSSEC types. From zone file analysis, one can
assert that a DNSSEC response requires 14 times more
bandwidth than a DNS response.
For the subdomain master and slave DNS server, one can
consider the cost of security depending on the different
configuration as below :

DNS < DNSSEC < (DNS + IPsec) << (DNSSEC + IPsec)

Difference between the CPU time required in the DNSSEC
and (DNS + IPsec) configuration is rather small. In this
specific case, IPsec tunnels have also been configured
between master and slave. The difference is then even
smaller then in the case of the rootdomain server.
Difference between time CPU required for the subdomain
servers, and the rootdomain server is due to response size
difference and load balancing. If one considers the DNS
protocol, the rootdomain server is sending an NS type, that
indicates the name of the next server to send the request to,

and a A type, which gives the IP address of the server. If
one considers DNSSEC, one should add, the NSEC and SIG
associated types. The subdomain servers are only sending
one A type data. So rootdomain answers are twice bigger.
Furthermore, traffic on subdomain servers is load balanced
between the master and the slave. In term or bandwith, a
single subdomain server is dealing with 1/4 of the traffic of
the rootdomain server.
An analysis between cache-forwarder performances and
other servers is quite hard since we are using different
devices in this test. Nevertheless the security cost according
to time CPU is as below :

DNS < IPsec << DNSSEC < (DNSSEC + IPsec)

The main difference between this server and the others, is
that this one is dealing with much more traffic than the other
servers. In fact, one can notice that IPsec, generates on this
server, a higher cost than the on the other devices (in
percentage). This shows that loading tests are necessary to
evaluate cost of security.
Although loading tests are required for a complete security
cost evaluation, but as far as unitary tests are concerned, it
happens that a classification of security cost regarding to
time CPU is as below :

DNS < (DNS + IPsec) < DNSSEC << (DNSSEC +
IPsec).

D. Security Cost according to memory load

Figure 4 presents the percentage of used memory on the
different servers, according to the different network
configuration.

Tested server /Config DNS (DNSSEC+IPsec) DNSSEC (DNSSEC+IPsec)
dnssec1
rootdomain server

1.60
%

1.60% 1.60% 1.60%

dnssec2
(master subdomain server)

1.70% 1.70% 1.70% 1.80%

dnssec3
(slave subdomain server)

1.70% 1.70% 1.80% 1.80%

Cache forwarder 0.40% 0.40% 0.40% 0.40%

Figure 4 : Security cost and memory load

Memory load is proportional to the zone file size. BIND
DNS servers are loading the whole zone file into their cache
memory. If memory is not large enough, the server crashes.
Further tests shows up that the size of the zone file has no
incidence on time response. In our tests, little zone file were
used so used memory on the DNS server is not large.
Time to live (TTL) of DNS data is set to zero, so the cache
forwarder doesn’t need to keep all already requested data,
and so it memory is not increasing during the tests.
Nevertheless more memory is required when DNSSEC is
used. In fact DNS cache forwarder behaves as a client and
so needs to keep contexts of quite large data.

E. Conclusion

This first set of tests shows the cost of security on unitary
requests using different network security configurations.
IPsec and the use of symmetric cryptography make this
protocol better than DNSSEC when time response and time

 6

CPU are considered. Nevertheless the differences go down
when load is increasing.
As far as memory load is concerned, it happens that
DNSSEC requires more memory than IPsec because of
heavier datagram and computing operations.
In all tests involving IPsec, IKE key negotiation was not
considered. We only considered pre-established tunnels.
The client used in unitary test was dig part of the BIND
9.3.1 distribution. This client has not been designed for
loading tests purposes. This is why a new client has been
designed for our loading tests.

V. LOADING TESTS

Since now the DNS client used to perform test is not
anymore the dig client, but a home made client. This home
made java client enables us to adjust the rate of sending
requests as well as analyse answers contend. It then enables
us to simulate simultaneous DNS client among the network,
in a ”real” environment.
This section focus especially on overload behaviour and on
properly answered requests rate. Those parameters will be
tested on a single server (single server tests) or on the global
architecture (network tests).

A. Time CPU and correct responses – single server test

Those tests tend to show the highest acceptable rate of
requests for the servers, and so to measure the influence on
performances as well as behaviours of those different
servers, according to the different security configuration.

Figure 5: CPU load according to number of sent
requests, with different DNS configurations,

For each configuration one can notice two breaking points :

- The server breaking point: Any configuration has a
maximum CPU load that a server can accept. The
server breaking point is the lowest rate of sent
request where the maximal CPU load is reached.
Figure 4 illustrates this breaking point by
considering the CPU load regarding to the rate of
sent requests. It shows that with IPsec, the maximal
CPU load can be of 100% whereas with no IPsec
configuration, the CPU load is around 90%. This
shows that an overloaded device using IPsec, can
eventually be unreachable, not only for DNS
requests but for any other operations.

- The service breaking point: Whereas the server
breaking point is defined with the maximum CPU
load of the device, the service breaking point is
rather looking to properly answered requests. The
service breaking point is then defined as the
maximum rate of sending request a DNS server can
answer properly. Whereas server breaking point is
looking at server overload, the service breaking
point is looking at service overload.

Regarding the CPU load with the different configuration, it
happens that the security cost is as mentioned below:

DNS < DNSSEC < (DNS+IPsec) < (DNSSEC + IPsec)

On the contrary to unitary tests, DNSSEC seems to present
advantages over IPsec in loading tests. This is easily
explained by the fact that sending all DNSSEC information
costs more then signing a few requests, but when the
number of requests increases, it becomes easier to send data
then to encrypt data. Implied processes don’t manage
contexts the same way.

Figure 6: Number of correct answers according to
number of sent requests with different

Nevertheless before the server is not able to answer
anymore to request, there is a intermediary point where the
DNS service is not conducted properly, and requests might
be answered, but not with a proper answer. This means that
a request whose answer is contained in the zone file get an
answer with an error message. This point is called the
service breaking point. The figure shows those service
breaking points for different configurations. Tests are
performed with direct connection from client to tested
server, and the cache-forwarder server is not considered.
Figure 4 shows the maximum CPU load of the different
security configurations, which are 100% or 90%. Overload
point is considered for CPU load over 90% of the maximum
CPU load, that is to say 90% for the first and 81% for the
other.
Configuration DNS (DNS+IPsec) DNSSEC (DNSSEC+IPsec)
90% load of
server breaking
point

3000 2000 1800 1500

Security cost 0% +33% +40% +50%

Figure 7: Overload CPU point with the different security
configuration

Figure 8 then makes it possible to evaluate in terms of
requests the maximum loading supported by DNS servers
according to various configurations. This table confirms the
higher cost during loading tests of IPsec compared to
DNSSEC.

 7

Figure 6 highlights that for small values of the load, the
number of answers is equal to the number of requests for all
the configurations. For larger values, the graph is not linear
any more. The service breaking point corresponds to the
maximum rate of requests that the server is able to treat
correctly. The position of the critical point depends on the
configuration and is summarized in Figure 7.

Configuration DNS DNSSEC (DNS+IPsec) (DNSSEC+IPsec)
service breaking
point

3000 2500 2000 1500

Security cost 0% +17% +33% +50%

Figure 8: Maximum treatment capacity of naming
servers using different security configuration

Various security configurations evaluation shows that
protocol DNSSEC is more robust than IPsec in network
overload situation. Thus, DNSSEC seems to cost twice less
than IPsec in term of a maximum number of treated DNS
requests.

B. Security cost according to CPU load on the network
architecture

It is still a loading test, but this time influence on the
network architecture is considered. The java developed
client sends requests to the network architecture through the
cache forwarder server as an intermediary point or a relay.
During this test, the relay happens to be a bottleneck. For a
reduced rate of requests, the resolution process is properly
managed with almost 100 % of correct answers. When rate
increases, the resolution process fails from time to time and
either answers of type SERVFAIL are sent to the client, or
requests are directly discarded by the server and doesn’t
even answer to the requests. The client now makes the
difference among the received answers between the correct
answers with a NO ERROR tag and the error messages with
a SERVFAIL tag. For the tests involving DNSSEC, there
are two possibilities: the customer can decide to ask the
relay not to check signature validity or to make it (default
option).
The first option can be specified by putting the bit CD
(Checking Disable) at 1 in the request. Instead of four types
of tests to be made, now there are six of them because of six
possible combinations.

Figure 9: Number of properly answered requests
regarding to the number of sent requests, using different
security configuration, as well as the signature check
option. Configurations are : DNS (C), (DNS + IPsec) (F),
(DNSSEC + IPsec) with signature check performed by
cache forwarder server(I), (DNSSEC + IPsec) with no
signature check performed by the cache forwarder (M),
DNSSEC with signature check performed by the cache
forwarder server (Q), and DNSSEC without signature
check performed by the cache forwarder (T).

Just like in the former test, the figure Numbers properly
answered requests regarding to the number of sent requests
(figure 9) shows a breaking point for each different
configuration tested. Breaking points are visible in figure
10.

Config DNS DNS +

IPsec
DNSSEC
(sig
check)

DNSSEC
(no sig
check)

DNSSEC
+ IPsec
(sig
check)

DNSSEC
+ IPsec
(no sig
check)

Max numb. of
properly
answered req.

1000 700 400 450 300 400

Security cost 0% +30% +60% +55% +70% +60%

Figure 10: Network architecture capacity to deal with
traffic load and answer properly.

Regarding to the ratio of the number of properly answer
request / number of sent requests, the security cost is as
below :

DNS < (DNS+IPsec) < (DNSSEC without checks) <
(DNSSSEC with checks) < (DNSSEC without checks +
IPsec) < (DNSSEC with checks + IPsec)

Values reported in the table are, at first glance quite
surprising compared to results get in the single server case.

The fall of performances when considering the whole
network architecture is very important if protocol DNS is
made secure. The number of properly answered requests is
much smaller than the values we get in the single server
bench of tests. In fact the cache-forwarder server is dealing
with the entire resolution which includes sending requests to
the proper server, opening contexts, analyzing responses,
checking signatures... So the cache-forwarder happens to be
quickly overloaded, much faster then previous servers
which were mainly answering to requests in a iterative way.

 8

Figure 11: CPU load regarding to the number of
requests, the different security configuration, and
activation of the check signature option. Different
configurations are the following : DNS (B), (DNS +
IPsec) (D), (DNSSEC + IPsec) with signature check
option activated (F), (DNSSEC + IPsec) without
signature check option activated (I), DNSSEC with
signature check option activated (L), and DNSSEC
without signature check option activated (P).

Considering and analysing figure 7 as we did in previous
test, it becomes clear that the maximum number of requests
answered correctly in each configuration is the cache-
forwarder service breaking point. This test highlights the
key role of the cache-forwarder DNS server in the
architecture, and its bottleneck position. Concentrating all
requests the cache-forwarder server needs to be properly
designed.

VI. CONCLUSION
These tests show that security has a considerable impact on
the DNS server / network architecture performances.
Parameters for both single servers and global network
architecture such as: the time response, the maximum
capacity of request treatment and the update time are to be
taken into account when secure DNS deployment is
considered.
There is no security extension that is recommended rather
then the other.
Since there is no one-best-security-extension, security
extensions considered for deployment have to be chosen
according to the service requirements. In that sense, TSIG
proved to be rather inexpensive during our update tests and
seems well adapted to make safe transactions between
servers. Quite easy to configure, TSIG is mainly focused on
integrity, and authentication. Manual configuration on
communicating nodes makes TSIG not scalable. IPsec on
the other hand is also focused on confidentiality and provide
a key negotiation mechanism (IKE), which makes it
scalable. Once the tunnel is established, security cost is
similar to TSIG’s cost. DNSSEC on the other hand, does not
seem to fit architecture that requires frequent updates. When
time response is considered on an not-loaded architecture,
(DNS + IPsec) seems better than DNSSEC. On the other
hand, when robustness to heavy load is considered
DNSSEC seems to be better than (DNS + IPsec). In fact
DNSSEC certify the information whereas IPsec and TSIG

provides authentication of the node one is communicating
with.
This property is a great advantage for balancing load
thought the network.
These tests were considering on cost of securing the binding
between a domain name and an IP address. To go even
further and to secure the bind between an IP address and an
Ethernet address, SEND seems to be a interesting point to
look at.

VII. AKNOWLEDGMENT

I would like to thank very much Bogdan Marinoiu for all
testing results and Jean Michel Combes for supporting our
investigation inn DNSSEC.

REFERENCES
[1]. Paul Albitz and Cricket Liu. Dns et bind, 2002. Edition
: 4.
[2]. R. Arends, R. Austein, M. Larson, D. Massey, and S.
Rose. DNS Security Introduction and Requirements. RFC
4033 (Proposed Standard), March 2005.
[3]. R. Arends, R. Austein, M. Larson, D. Massey, and S.
Rose. Protocol Modifications for the DNS Security
Extensions. RFC 4035 (Proposed Standard), March 2005.
[4]. R. Arends, R. Austein, M. Larson, D. Massey, and S.
Rose. Resource Records for the DNS Security Extensions.
RFC 4034 (Proposed Standard), March 2005.
[5]. D. Eastlake 3rd. Domain Name System Security
Extensions. RFC 2535 (Proposed Standard), March 1999.
Obsoleted by RFCs 4033, 4034, 4035, updated by RFCs
2931, 3007, 3008, 3090, 3226, 3445, 3597, 3655, 3658,
3755, 3757, 3845.
[6]. D. Eastlake 3rd. DNS Request and Transaction
Signatures (SIG(0)s). RFC 2931 (Proposed Standard),
September 2000.
[7]. D. Eastlake 3rd. Secret Key Establishment for DNS
(TKEY RR). RFC 2930 (Proposed Standard), September
2000.
[8]. S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. RFC 2401 (Proposed Standard),
November 1998. Updated by RFC 3168.
[9]. P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B.
Wellington. Secret Key Transaction Authentication for DNS
(TSIG). RFC 2845 (Proposed Standard), May
2000. Updated by RFC 3645.
[10]. P. Vixie, S. Thomson, Y. Rekhter, and J. Bound.
Dynamic Updates in the Domain Name System (DNS
UPDATE). RFC 2136 (Proposed Standard), April 1997.
Updated by RFCs 3007, 4033, 4034, 4035.

	INTRODUCTION
	Tested DNS architecture description
	Goals and strategy
	DNS Security mechanisms description
	Differences between security mechanisms
	Goals of the tests
	Tests Strategy

	Unitary tests
	Unitary test description
	Security cost and time response
	Security cost and time CPU
	Security Cost according to memory load
	Conclusion

	Loading tests
	Time CPU and correct responses – single server test
	Security cost according to CPU load on the network architect

	Conclusion
	Aknowledgment

