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Abstract— Domain Name System (DNS) is a public 
infrastructure that makes Internet so easy to use. On the other 
hand this protocol has been so popular that other protocols 
such as ENUM, or other private databases are thinking of 
implementing DNS-like database. 3G, IMS are other examples 
of wireless architecture that relies on DNS, especially for 
routing purposes, and the discovery of SIP-proxies.. In a near 
future, it seems then that DNS-like databases will host many 
kind of information, some being confidential, some needing 
dynamically being updated... 
Whereas public or private, DNS until now, was not really 
implementing much security. This paper aims at measuring the 
cost and impact of different security extensions on the Domain 
Name System (DNS), such as DNSSEC, TSIG, as well as other 
security protocol such as IPsec. Tests were performed both on 
single servers as well as on a network environment. 
By doing so, we think that anyone relying on a DNS 
architecture public or private will have the key element to 
secure this architecture, according to its needs, such as 
dynamic update, scalability, time response, CPU load... 

 
 

Index Terms— DNS, DNSSEC, Naming architecture, 
Security 
 

I. INTRODUCTION 
Internet mainly relies on DNS system which enables the 
binding between a human readable domain names such as 
www.francetelecom.com and an IP address. This naming 
system was elaborated when security was not considered as 
a critical issue. Then, a few security extensions were added 
to the DNS protocol (DNSSEC rfc2535 [5], rfc4033 [2], 
rfc4034 [4], rfc4035 [3], TSIG rfc2845 [9], SIG(0) rfc2931 
[6]). Nevertheless those options are still not fully deployed 
over the global Internet, so today DNS can’t be considered 
as secure. 
On the security point of view, frequent attacks against DNS 
servers, show DNS’s Internet Achill’s heel position. 
DNSSEC deployment is more and more required. However, 
this protocol standardized in March 2005 implies radical 
changes on both the structure and the architecture of the 
current DNS. Indeed DNSSEC is using heavy security 
mechanisms, that impact DNS protocol. 
DNS system is mainly used to enable naming service, 
binding a domain name and an IP address. However, new 
protocols such as ENUM for example, gives DNS new 
perspectives of services, and so new way to handle DNS 
databases, with new security requirements as 
confidentiality, authentication of clients... 
This article aims at measuring costs generated by the use of 
DNS security extensions. This article will present results of 
a bench of tests of various DNS security extensions 

(DNSSEC and TSIG), as well as other security protocols 
such as IPsec (rfc2401[8], [10]). Tests were all performed 
on the same DNS architecture, so that comparison between 
those security extensions can easily be done. Once security 
cost has been highlighted, it is possible to deploy a secure 
DNS database. Selection of relevant security mechanisms is 
based on the specific security requirements, as well as 
performances the data base should meet, taking into account 
the global network environment. On the other hand, by 
knowing the cost of security extensions, administrators 
could also plan a migration scenario by first modifying the 
architecture, and then deploy required security extensions. 

II. TESTED DNS ARCHITECTURE DESCRIPTION 
 
Security tests on DNS were performed on the DNS 
architecture presented in figure 1 and figure 2. The DNS 
architecture is considering two zones : 

- A ”father zone” whose domain name is 
”rootdomain” 

- A son zone whose domain name is 
”subdomain.rootdomain” 

Network architecture of this platform is composed of three 
DNS servers: 

- One hosting the rootdomain zone file 
- Two DNS servers hosting the subdomain zone 

subdomain.rootdomain. One of the servers is a 
master DNS server, and the other is the slave DNS 
server 

The tested DNS architecture platform is connected the IPv6 
experimental network [13] of France Telecom R&D. The 
DNS cache-forwarder server is resolving requests sent by 
the clients. 
Servers are Pentium II and III at 500 Mhz with 128 MB 
memory, running OS Linux Ubuntu (kernel 2.6). DNS 
servers software is BIND 9.3.1 ([1]). Requests were sent 
using the client of this distribution, as well as a home 
developed DNS Java client. 
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Figure 1: Tested DNS/DNSSEC architecture 
 

III. GOALS AND STRATEGY 

A. DNS Security mechanisms description 
 
DNSSEC stands as DNS security extension, and has been 
standardized by the IETF in documents rfc4033 [2], rfc4034 
[4] and rfc4035 [3]. This extension enables data integrity 
check, while packets go through the network from server to 
client as well as DNS data source authentication. Data 
source authentication is possible trough the establishment of 
a chain of trust between the DNS servers. The chain of trust 
enables to go from one trusted DNS servers to trusted 
subdomain DNS servers. Thus DNSSEC enables you to get 
a response from a DNS server you can trust. Trust is based 
on cryptographic public / private key properties. 
TSIG and SIG(0) (DNS Request and Transaction 
SIGnature) are DNS extensions that enable authentication. 
TSIG ((rfc2845 [9]) is signing data using symmetric 
cryptography. Client and DNS servers authenticate 
themselves by sharing a private key. Since communicating 
entities are using pre-shared keys, authentication between 
nodes is nor scalable. Thus TSIG can only be used with a 
very few number of nodes. TKEY (rfc2930 [7]) is a 
mechanism that enable setting up a TSIG key between 
different nodes. 
SIG(0) (rfc2931 [6]) is using asymmetric cryptography. It 
enables a DNS server to encrypt a DNS transaction with a 
private key. The public key is on the server and available in 
the zone file. Whereas DNSSEC is signing data, with the 
private key, SIG(0) is signing the exchange. 
IPsec (rfc2401 [8]) (Internet Protocol Security) enables 
confidentiality, and authentication issues of IP datagrams. 
IPsec is not dealing with data, but with data flows 
exchanged between two IP nodes. So IPsec is authenticating 
the source IP address of the device that is sending DNS data 
rather than the authority that has generated the DNS data. 
On the other hand, DNSSEC is authenticating the source of 
the DNS data. One can have access to those DNS data, from 
requesting a cache server, a primary server, or any kind of 
device, the signature will be the same, since the same key is 
used to sign DNS data. Using IPsec, authentication is based 
on a specific IP address, and so DNS requests have to be 

sent to that specific server. IPsec, in our configuration, is 
using symmetric cryptography, which, compared to SIG(0), 
needs less resources. Furthermore, IKE (Internet Key 
Exchange) is a protocol that enables management of SA 
(Security Association) between peers. 
 

B. Differences between security mechanisms 
 
To point out differences between mentioned above security 
mechanisms, some aspects might be considered: 
 
Which way data are encrypted? Encryption can be either 
symmetric or asymmetric. Symmetric encryption requires 
that both entities exchanging data own a shared secret key. 
The main advantage of using symmetric encryption mode is 
that it costs far less than asymmetric encryption. In fact, for 
a given security level, far less calculation resources are 
required when symmetric encryption are considered. On the 
other hand one of its drawbacks is that mechanisms to set in 
a secure way, the shared secret key between the nodes must 
be provided. Furthermore, since both entities are using the 
same secret key, authentication cannot be proceeded as with 
asymmetric cryptography. One can easily understand that if 
two nodes and only two nodes are sharing a key, by 
decrypting data, one node can deduce data has been sent 
from the other node. In that sense one can think of 
authentication with shared key. This is not anymore the case 
when the key is shared by more than two nodes! By sharing 
the key between more than two nodes, encrypted data might 
have been emitted from any node that owns the key. As a 
result, one can’t prove data has been emitted from one or the 
other node. 
What kind of security is implemented? Security is a 
generic concept and can be considered from different ways, 
implying different security mechanisms or security 
properties. Security properties considered are the one 
mentioned below: 

- Confidentiality: this property enables data sent 
through a network to be read and understood only 
by specific users. Encryption is usually used for 
confidentiality purpose. Most of the time 
encryption operations require algorithm, and keys. 
Whoever doesn’t have the appropriated key will 
not be likely to have the clear and understandable 
data. Theses who are owning the appropriate key 
will need to decrypt the encrypted data. The 
decryption process also requires keys. When 
symmetric cryptography is used, the key can be a 
pre-shared key which means that data is encrypted 
and decrypted with the same key. When 
asymmetric cryptography is used, a pair of public / 
private key is required. Data encrypted with the 
private key will be decrypted thanks to the public 
key, and data encrypted with the public key will be 
decrypted with the private key. 

- Integrity: this property enables a user to assert the 
received data has not been changed by a third 
entity. Hash functions are often used in that 
purpose. A hash function is a one-way function 
that takes input data of any size and generates an 
output data of a given size. In our purpose, a hash 
function is such that if two data are different, 
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hashes are different in term of probability. This 
enables one to check whether or not a given data 
has been changed from the time it has been sent 
and the time it has been received.  

- Authentication: this property enables the node 
that receives the data to check the identity of the 
sender. When public / private keys are involved, a 
data encrypted with a private key can only be 
decrypted with the public key. By using this 
process, a node that is owning a pair of public / 
private key can send data encrypted with the 
private part of the public / private pair of keys to 
another node. Only nodes that are owning the 
public part of the sender node’s public / private 
pair of keys, will be likely to decrypt the data. 
Since such data could only have been sent by the 
node that is owning the private key, the sender is 
then authenticated. Also data can be the 
meaningful data, but if one is only interested in 
using asymmetric cryptography for authentication, 
the encrypted data can be only the hash of the 
meaningful data. By doing so the encrypted data is 
far less smaller. This process is called the signature 
process. As we saw in previous section, 
authentication can also be considered with pre-
shared keys, as long as the key is shared between 
two, and no more than two nodes. 

 
What is the encrypted data? Considering one encryption 
method, one needs to know what to encrypt. Although IPsec 
and DNSSEC are not using the same encryption method, 
our purpose in that subsection is not to discuss about used 
encryption methods. Our purpose is to point out the nature 
of the encrypted data, and its meaning in term of security for 
network deployment. 
 
In the case of IPsec, IP datagram between two nodes are 
encrypted. This means that security is implemented at the 
transport layer, and enables to secure communication 
between nodes. On the other hand, DNSSEC implement 
security at the application layer, by encrypting the data 
itself, and providing signature. 
 
The difference is then the same as if one was considering a 
letter with a signature. We do generally don’t care about 
who puts the letter into the mailbox. We are more concerned 
about who signed the letter, and use the signature at the 
bottom of the letter to authenticate the person who wrote the 
letter. This is DNSSEC point of view. By appending a 
signature to the data at the application 
layer, DNSSEC client doesn’t care about who provides the 
data to the client. DNSSEC client are rather concerned 
about who signed the data, and if the nodes that signed the 
data is a trusted node. 
If one goes on with this analogy, another way to consider 
security is to care about who provides the data, and consider 
that data is reliable when coming from a trusted node. This 
is IPsec’s point of view. IPsec, is securing the transport 
layer, and so relies rather on nodes then on the data. 
 
Those two visions have an impact in term of network 
deployment. IPsec aims at securing a tunnel between two 
nodes, each IP datagram will be encrypted on the flow. This 

means that pre-calculation is not possible. In term of 
network deployment the use of IPsec means the trust is 
based on connectivity to trusted nodes. This would then 
require that clients connect themselves directly to the trusted 
node. So this would mean that all traffic will be 
concentrated on the trusted nodes, which would probably be 
in our case the authority servers. On the other hand, since 
DNSSEC is signing data at the application layer, data can be 
sent to the client by non trusted nodes such as relay servers. 
This is called the cache mechanism. Cache servers are 
collecting answer from previous requests, and answer to 
coming request with the answer they are storing. This 
mechanism enables DNS / DNSSEC traffic to be split 
between cache servers and authority servers. Note that this 
mechanism is possible because security is related to the 
data, and signatures are sent with the corresponding data. 
Asymmetric cryptography is used, which costs more than 
asymmetric cryptography, but that, in other hand enables 
pre-calculation. In fact communicated data are known in 
advanced, and do not vary from one client to the other. In 
that sense signatures do not need to be generated on the 
flow, and can be pre-computed. 
 

C. Goals of the tests 
The tests presented in this paper aims at giving keys to 
people that are looking to secure their DNS infrastructure. 
Cost of security will be presented considering different 
criteria such as functionalities, performances, as well as 
different configurations. 
The main configuration taken into account are : 

- DNS: This configuration is the reference we are 
using to measure the security cost of other 
configurations. 

- DNSSEC:  This configuration is mainly concerned 
by DNS data integrity check and authentication. 
This DNSSEC security extension is not symmetric 
in the sense that only data from the server are 
concerned by security operations. The client is not 
authenticated by the server for example, and no 
security operations on client requests are being 
performed by the server. 

- DNS + IPsec: This configuration is rather used in 
server-to-server communication or client-to-server 
when the number of clients is relatively small. In 
fact, IPsec tunnel requires configuration which can 
be a problem to scalability, when the number of 
client increases. On the other hand the main 
advantage of this configuration is to add 
confidentiality. 

- DNSSEC + IPsec: This configuration is used to 
secure links between servers with IPsec, in order to 
secure all transactions, and not only DNS data. 
DNSSEC is in that sense considering the 
communication between clients and servers. 

- TSIG : This configuration is only use with server 
to server communication. In fact TSIG is using 
symmetric cryptography and so both 
communicating entity need to be configured. On 
the contrary to IPsec that can use IKE for key 
negotiation, there is no key negotiation protocols 
specifically designed for TSIG communication. At 
last, on the contrary to IPsec, TSIG is not 
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implementing confidentiality of transferred data, 
but is only focused on integrity purpose. 

 

D. Tests Strategy 
 
For each mentioned configuration, this paper aims at 
measuring, in a quantified way, the impact of security on the 
DNS architecture. This impact with be measured thanks to 
the following criteria: 

- Time response to requests 
- CPU load generated by the DNS process 
- Updating time 

Tests are made in two distinct environments : 
- Single server 
- Simulating DNS network architecture 

Tests on a single server aim at measuring the security 
impact on specific devices. Those kind of tests will be called 
server test. Nevertheless, DNS servers are part of a network, 
and specific servers test might generates border effect on the 
network or on the Naming architecture. Measurement of 
security cost on the global naming architecture will be 
called Network tests. 
Tests can be of three distinct natures: 

- Unitary Tests: Those tests aim at measuring server 
and network behavior on a per request base. In 
order to get readable results, tests need to be 
performed a certain number of time to meet 
probability requirements. 

- Load Tests: Those tests aim at measuring server 
and network behavior in a network environment, 
i.e. when more than one client are sending requests. 
In that purpose, many parallel clients will be 
simulated. 

- Update Tests: Those tests aims at measuring the 
servers / network capacity to deal with updates. In 
this paper, tests will be proceeded in the following 
order.  

 
At first unitary test will be made, then, loading tests. At last, 
updating tests will be performed. Tests concerning time 
response and memory / CPU load, two types of DNS client 
were used: the traditional DNS client dig, that is part of the 
BIND 9.3.1 ([1]) distribution, and a Java home-made client 
specifically developed for the tests purposes. If dig client is 
waiting for the answer of a request before proceeding to the 
next request, the java client is working in a asynchronous 
way. It uses two threads, one that is sending requests, and 
the other that is receiving responses and that analyses them. 
By its design it is more adapted for variable loading tests. 
Updating tests are using the traditional nsupdate of BIND 
9.3.1 distribution. To generate requests automatically, bash 
scripts are used. 

IV. UNITARY TESTS 

A. Unitary test description 
 
The first test aims at evaluating impact on single DNS 
request performed by dig client. In that purpose we do care 
not to overload neither the servers nor the network. dig 
client is sending request N + 1 only once request N has been 
answered. Requests are of same type in any tested 

configuration. DNS servers are using CPU time and 
memory. Those data are given through system command 
regarding the DNS process also referenced as named. 
 

B.  Security cost and time response 
 
Figure 2 shows time response expressed in millisecond (ms) 
depending on the configuration. The third line is measuring 
security cost in percentage (%) by comparing time 
responses of configuration that implements security and 
time response of the DNS only configuration. 
 
 

 
Figure 2 : Unitary tests on different security 
configurations 
 
Figure 2 clearly shows impact of the different security 
mechanisms on time response. If ”A < B”means that B is 
costing more than A, by considering time response we have 
the following statement : 
 
DNS < (DNS+IPsec) < DNSSEC < (DNSSEC + IPsec) 
 
DNSSEC costs at lot higher then IPsec because of the use of 
asymmetric cryptography, which cost more then symmetric 
cryptography. Furthermore, the client not only have to 
decrypt, but also to check signatures, which means that it 
needs to compute a hash of the received data, then decrypt 
the SIG type data sent by the server, and compare it with the 
computed Hash. In fact SIG type data on DNSSEC server 
are DNS data signatures, that is to say hash of DNS data 
encrypted with the private part of the server pair of keys. All 
of these make DNSSEC time response much higher then 
IPsec time response. 
The cost of the (DNSSEC + IPsec) configuration is higher 
then the sum of the cost of DNSSEC configuration and the 
cost of the IPsec configuration. In fact DNSSEC data are 
more verbose, so IPsec, is, in this configuration, encrypting 
more datagram than in the IPsec only configuration. 
 

C. Security cost and time CPU 
 
The table below shows security cost of the different 
configurations according to time CPU of the DNS (named) 
process. The cache-forwarder server is resolving requests in 
a recursive way. This means that a request sent by the dig 
client to the cache forwarder generates a first request from 
the cache-forwarder to the rootdomain DNS server, 
followed by a second request from the cache-forwarder to 
the subdomain DNS server. Of course servers are 
configured to work in a iterative way, which means that the 
answer from server to the cache-forwaders are only made of 
DNS data that are within servers’ zone file. In this tests all 
servers devices are the same. 
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In addition to decryption operation, a request sent by the 
client generates two requests from the cache-forwarder. One 
is sent to the rootdomain DNS serve, and one is sent to the 
subdomain DNS servers. Since there is load balancing 
between master and slave DNS server, one out of two is sent 
to the slave subdomain DNS serve and one out of two is 
sent to the master subdomain DNS server. 
Time CPU is quite low because the dig client is sending a 
request only after it has received the response of the 
previous request. This shows that network latency is much 
more important than DNS resolution load, which gives DNS 
/ DNSSEC server a high availability. 
 
 
Tested server /Config DNS (DNSSEC+IPsec) DNSSEC (DNSSEC+IPsec) 
dnssec1 
rootdomain server 

0.82
% 
[0%] 

1.21 % 
[+47%] 

1.25% 
[+52%] 

2.89% 
[+259%] 

dnssec2 
(master subdomain server) 

0.20% 
[+0%] 

0.36% 
[+80%] 

0.30% 
[+50%] 

0.90% 
[+350%] 

dnssec3 
(slave subdomain server) 

0.20% 
[0%] 

0.35% 
[+75%] 

0.30% 
[+50%] 

0.73% 
[+265%] 

Cache forwarder 7.20% 
[+0%] 

7.40% 
[+2%] 

8.80% 
[+22%] 

8.80% 
[+22%] 

Figure 3 : Security cost and time CPU 
 
Analysis of the results in figure 3 requires to consider DNS 
servers according to there type. For the rootdomain DNS 
server, one can consider security cost as below: 
 
DNS << (DNS + IPsec) < DNSSEC <<< (DNSSEC + 
IPsec) 
 
One can notice the very small difference between time CPU 
required for DNSSEC and time CPU required with IPsec. 
This clearly shows the balance between sending more data, 
and encrypting data. As mentioned in previous section, 
signatures are pre-computed in DNSSEC, so that DNSSEC 
server doesn’t have to proceed to any encryption operation. 
On the other hand DNSSEC servers need to deal with much 
bigger zone files than traditional DNS server, and DNSSEC 
generates much more traffic than DNS (SIG and NSEC 
types are only parts of DNSSEC protocol, and they are 
carrying quite huge amount of data, compared to traditional 
DNS data). IPsec encrypt smaller data, but each 
communication requires encryption operation. CPU time is 
equal by using either DNSSEC or IPsec, means that 
encryption operation for DNS data costs as much as sending 
specific DNSSEC types. From zone file analysis, one can 
assert that a DNSSEC response requires 14 times more 
bandwidth than a DNS response. 
For the subdomain master and slave DNS server, one can 
consider the cost of security depending on the different 
configuration as below : 
 
DNS < DNSSEC < (DNS + IPsec) << (DNSSEC + IPsec) 
 
Difference between the CPU time required in the DNSSEC 
and (DNS + IPsec) configuration is rather small. In this 
specific case, IPsec tunnels have also been configured 
between master and slave. The difference is then even 
smaller then in the case of the rootdomain server. 
Difference between time CPU required for the subdomain 
servers, and the rootdomain server is due to response size 
difference and load balancing. If one considers the DNS 
protocol, the rootdomain server is sending an NS type, that 
indicates the name of the next server to send the request to, 

and a A type, which gives the IP address of the server. If 
one considers DNSSEC, one should add, the NSEC and SIG 
associated types. The subdomain servers are only sending 
one A type data. So rootdomain answers are twice bigger. 
Furthermore, traffic on subdomain servers is load balanced 
between the master and the slave. In term or bandwith, a 
single subdomain server is dealing with 1/4 of the traffic of 
the rootdomain server. 
An analysis between cache-forwarder performances and 
other servers is quite hard since we are using different 
devices in this test. Nevertheless the security cost according 
to time CPU is as below : 
 
DNS < IPsec << DNSSEC < (DNSSEC + IPsec) 
 
The main difference between this server and the others, is 
that this one is dealing with much more traffic than the other 
servers. In fact, one can notice that IPsec, generates on this 
server, a higher cost than the on the other devices (in 
percentage). This shows that loading tests are necessary to 
evaluate cost of security. 
Although loading tests are required for a complete security 
cost evaluation, but as far as unitary tests are concerned, it 
happens that a classification of security cost regarding to 
time CPU is as below : 
 
DNS < (DNS + IPsec ) < DNSSEC << ( DNSSEC + 
IPsec). 
 

D.  Security Cost according to memory load 
 
Figure 4 presents the percentage of used memory on the 
different servers, according to the different network 
configuration. 
 
Tested server /Config DNS (DNSSEC+IPsec) DNSSEC (DNSSEC+IPsec) 
dnssec1 
rootdomain server 

1.60
% 

1.60% 1.60% 1.60% 

dnssec2 
(master subdomain server) 

1.70% 1.70% 1.70% 1.80% 

dnssec3 
(slave subdomain server) 

1.70% 1.70% 1.80% 1.80% 

Cache forwarder 0.40% 0.40% 0.40% 0.40% 

Figure 4 : Security cost and memory load 
 
Memory load is proportional to the zone file size. BIND 
DNS servers are loading the whole zone file into their cache 
memory. If memory is not large enough, the server crashes. 
Further tests shows up that the size of the zone file has no 
incidence on time response. In our tests, little zone file were 
used so used memory on the DNS server is not large. 
Time to live (TTL) of DNS data is set to zero, so the cache 
forwarder doesn’t need to keep all already requested data, 
and so it memory is not increasing during the tests. 
Nevertheless more memory is required when DNSSEC is 
used. In fact DNS cache forwarder behaves as a client and 
so needs to keep contexts of quite large data. 
 

E. Conclusion 
 
This first set of tests shows the cost of security on unitary 
requests using different network security configurations. 
IPsec and the use of symmetric cryptography make this 
protocol better than DNSSEC when time response and time 
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CPU are considered. Nevertheless the differences go down 
when load is increasing. 
As far as memory load is concerned, it happens that 
DNSSEC requires more memory than IPsec because of 
heavier datagram and computing operations. 
In all tests involving IPsec, IKE key negotiation was not 
considered. We only considered pre-established tunnels. 
The client used in unitary test was dig part of the BIND 
9.3.1 distribution. This client has not been designed for 
loading tests purposes. This is why a new client has been 
designed for our loading tests. 

V. LOADING TESTS 
 
Since now the DNS client used to perform test is not 
anymore the dig client, but a home made client. This home 
made java client enables us to adjust the rate of sending 
requests as well as analyse answers contend. It then enables 
us to simulate simultaneous DNS client among the network, 
in a ”real” environment. 
This section focus especially on overload behaviour and on 
properly answered requests rate. Those parameters will be 
tested on a single server (single server tests) or on the global 
architecture (network tests). 
 

A. Time CPU and correct responses – single server test 
 
Those tests tend to show the highest acceptable rate of 
requests for the servers, and so to measure the influence on 
performances as well as behaviours of those different 
servers, according to the different security configuration. 

 
Figure 5: CPU load according to number of sent 
requests, with different DNS configurations, 
 
For each configuration one can notice two breaking points : 

- The server breaking point: Any configuration has a 
maximum CPU load that a server can accept. The 
server breaking point is the lowest rate of sent 
request where the maximal CPU load is reached. 
Figure 4 illustrates this breaking point by 
considering the CPU load regarding to the rate of 
sent requests. It shows that with IPsec, the maximal 
CPU load can be of 100% whereas with no IPsec 
configuration, the CPU load is around 90%. This 
shows that an overloaded device using IPsec, can 
eventually be unreachable, not only for DNS 
requests but for any other operations. 

- The service breaking point: Whereas the server 
breaking point is defined with the maximum CPU 
load of the device, the service breaking point is 
rather looking to properly answered requests. The 
service breaking point is then defined as the 
maximum rate of sending request a DNS server can 
answer properly. Whereas server breaking point is 
looking at server overload, the service breaking 
point is looking at service overload. 

Regarding the CPU load with the different configuration, it 
happens that the security cost is as mentioned below: 
 
DNS < DNSSEC < (DNS+IPsec) < (DNSSEC + IPsec) 
 
On the contrary to unitary tests, DNSSEC seems to present 
advantages over IPsec in loading tests. This is easily 
explained by the fact that sending all DNSSEC information 
costs more then signing a few requests, but when the 
number of requests increases, it becomes easier to send data 
then to encrypt data. Implied processes don’t manage 
contexts the same way. 

 
Figure 6: Number of correct answers according to 
number of sent requests with different 
 
Nevertheless before the server is not able to answer 
anymore to request, there is a intermediary point where the 
DNS service is not conducted properly, and requests might 
be answered, but not with a proper answer. This means that 
a request whose answer is contained in the zone file get an 
answer with an error message. This point is called the 
service breaking point. The figure shows those service 
breaking points for different configurations. Tests are 
performed with direct connection from client to tested 
server, and the cache-forwarder server is not considered. 
Figure 4 shows the maximum CPU load of the different 
security configurations, which are 100% or 90%. Overload 
point is considered for CPU load over 90% of the maximum 
CPU load, that is to say 90% for the first and 81% for the 
other. 
Configuration DNS (DNS+IPsec) DNSSEC (DNSSEC+IPsec) 
90% load of 
server breaking 
point  

3000 2000 1800 1500 

Security cost 0% +33% +40% +50% 

Figure 7: Overload CPU point with the different security 
configuration 
 
Figure 8 then makes it possible to evaluate in terms of 
requests the maximum loading supported by DNS servers 
according to various configurations. This table confirms the 
higher cost during loading tests of IPsec compared to 
DNSSEC. 
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Figure 6 highlights that for small values of the load, the 
number of answers is equal to the number of requests for all 
the configurations. For larger values, the graph is not linear 
any more. The service breaking point corresponds to the 
maximum rate of requests that the server is able to treat 
correctly. The position of the critical point depends on the 
configuration and is summarized in Figure 7. 
 
Configuration DNS DNSSEC (DNS+IPsec) (DNSSEC+IPsec) 
service breaking 
point  

3000 2500 2000 1500 

Security cost 0% +17% +33% +50% 

Figure 8: Maximum treatment capacity of naming 
servers using different security configuration 
 
Various security configurations evaluation shows that 
protocol DNSSEC is more robust than IPsec in network 
overload situation. Thus, DNSSEC seems to cost twice less 
than IPsec in term of a maximum number of treated DNS 
requests. 
 
 
 
 
 
 

B. Security cost according to CPU load on the network 
architecture 
 
It is still a loading test, but this time influence on the 
network architecture is considered. The java developed 
client sends requests to the network architecture through the 
cache forwarder server as an intermediary point or a relay. 
During this test, the relay happens to be a bottleneck. For a 
reduced rate of requests, the resolution process is properly 
managed with almost 100 % of correct answers. When rate 
increases, the resolution process fails from time to time and 
either answers of type SERVFAIL are sent to the client, or 
requests are directly discarded by the server and doesn’t 
even answer to the requests. The client now makes the 
difference among the received answers between the correct 
answers with a NO ERROR tag and the error messages with 
a SERVFAIL tag. For the tests involving DNSSEC, there 
are two possibilities: the customer can decide to ask the 
relay not to check signature validity or to make it (default 
option). 
The first option can be specified by putting the bit CD 
(Checking Disable) at 1 in the request. Instead of four types 
of tests to be made, now there are six of them because of six 
possible combinations. 
 

 
Figure 9: Number of properly answered requests 
regarding to the number of sent requests, using different 
security configuration, as well as the signature check 
option. Configurations are : DNS (C), (DNS + IPsec) (F), 
(DNSSEC + IPsec) with signature check performed by 
cache forwarder server(I), (DNSSEC + IPsec) with no 
signature check performed by the cache forwarder (M), 
DNSSEC with signature check performed by the cache 
forwarder server (Q), and DNSSEC without signature 
check performed by the cache forwarder (T). 
 
Just like in the former test, the figure Numbers properly 
answered requests regarding to the number of sent requests 
(figure 9) shows a breaking point for each different 
configuration tested. Breaking points are visible in figure 
10. 
 
Config DNS DNS + 

IPsec 
DNSSEC 
(sig  
check) 

DNSSEC 
(no sig 
check) 

DNSSEC 
+ IPsec 
(sig 
check) 

DNSSEC 
+ IPsec 
(no sig 
check) 

Max numb. of 
properly 
answered req. 

1000 700 400 450 300 400 

Security cost 0% +30% +60% +55% +70% +60% 

Figure 10: Network architecture capacity to deal with 
traffic load and answer properly. 
 
Regarding to the ratio of the number of properly answer 
request / number of sent requests, the security cost is as 
below : 
 
DNS < (DNS+IPsec) < (DNSSEC without checks) < 
(DNSSSEC with checks) < (DNSSEC without checks + 
IPsec ) < (DNSSEC with checks + IPsec) 
 
Values reported in the table are, at first glance quite 
surprising compared to results get in the single server case. 
 
The fall of performances when considering the whole 
network architecture is very important if protocol DNS is 
made secure. The number of properly answered requests is 
much smaller than the values we get in the single server 
bench of tests. In fact the cache-forwarder server is dealing 
with the entire resolution which includes sending requests to 
the proper server, opening contexts, analyzing responses, 
checking signatures... So the cache-forwarder happens to be 
quickly overloaded, much faster then previous servers 
which were mainly answering to requests in a iterative way. 
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Figure 11: CPU load regarding to the number of 
requests, the different security configuration, and 
activation of the check signature option. Different 
configurations are the following : DNS (B), (DNS + 
IPsec) (D), (DNSSEC + IPsec) with signature check 
option activated (F), (DNSSEC + IPsec) without 
signature check option activated (I), DNSSEC with 
signature check option activated (L), and DNSSEC 
without signature check option activated (P). 
 
Considering and analysing figure 7 as we did in previous 
test, it becomes clear that the maximum number of requests 
answered correctly in each configuration is the cache-
forwarder service breaking point. This test highlights the 
key role of the cache-forwarder DNS server in the 
architecture, and its bottleneck position. Concentrating all 
requests the cache-forwarder server needs to be properly 
designed. 
 

VI. CONCLUSION 
These tests show that security has a considerable impact on 
the DNS server / network architecture performances. 
Parameters for both single servers and global network 
architecture such as: the time response, the maximum 
capacity of request treatment and the update time are to be 
taken into account when secure DNS deployment is 
considered. 
There is no security extension that is recommended rather 
then the other. 
Since there is no one-best-security-extension, security 
extensions considered for deployment have to be chosen 
according to the service requirements. In that sense, TSIG 
proved to be rather inexpensive during our update tests and 
seems well adapted to make safe transactions between 
servers. Quite easy to configure, TSIG is mainly focused on 
integrity, and authentication. Manual configuration on 
communicating nodes makes TSIG not scalable. IPsec on 
the other hand is also focused on confidentiality and provide 
a key negotiation mechanism (IKE), which makes it 
scalable. Once the tunnel is established, security cost is 
similar to TSIG’s cost. DNSSEC on the other hand, does not 
seem to fit architecture that requires frequent updates. When 
time response is considered on an not-loaded architecture, 
(DNS + IPsec) seems better than DNSSEC. On the other 
hand, when robustness to heavy load is considered 
DNSSEC seems to be better than (DNS + IPsec). In fact 
DNSSEC certify the information whereas IPsec and TSIG 

provides authentication of the node one is communicating 
with. 
This property is a great advantage for balancing load 
thought the network. 
These tests were considering on cost of securing the binding 
between a domain name and an IP address. To go even 
further and to secure the bind between an IP address and an 
Ethernet address, SEND seems to be a interesting point to 
look at. 
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